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Overview

* Current Challenges with Analysis and
Visualization

* Solution: Vis/O
Rethinking 1/O architectures

e Solution: Climate Visualization with POP
Rethinking I/O access patterns

* Conclusions
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Current Workflows and Challenges

ANALYSIS AND VISUALIZATION
TODAY
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Today’s Supercomputing Environment

Simple.... Right?
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Today’s Challenges at the Petascale

* FLOPS FIRST!
— Designers: Computers designed to maximize FLOPS rating.

— Project Management: ~10% of budget (with variation from
system to system) spent on I/O and networking capability.

— Users: Compute is precious — Save Everything!

* Datais typically analyzed after the simulation is done,
if at all.

— Little in-situ analysis.
e Data typically dumped non-optimally.

— Do what is easy for the user to code or what made sense
to them. Ex) N=>1 Writes

— No standardization of /O formats — a moving target.
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The Bandwidth Gap:
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Networks Computational Power
Disk 1/0 Bandwidth Data Set Size (Bytes)
Displays (Pixel Count)

Orders of Magnitude Mismatch!
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What Does Analysis I/O Look Like?

* |tis not just about Restarts!
— All simulations result in some form of analysis.
— Need to read data to perform analysis.

e Reads Dominate

— Need to get raw data into the pipeline, filters and rendering
reduces data volume by orders of magnitude.

— Final product is ~1% of the size of the original input set.

— Final data products are sent directly to display or easily saved
(images are small in comparison to data).

 Want to amortize I/O cost
— Use same tool to perform visualization and analysis.

— Visualization drives science question which drives another
visualization.
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Analysis 1/0: More Than Simple Reads

* Bulk Reads.
— Read in entire data set or slab of variables.
— Sort and extract in memory (filter’s job).

* Reads ideally have a deadline.

— Want to maintain interactivity with users (or finish batch job
quick).

— Not have your users go for coffee with every operation.

— Ex.) Interface Response in 10 sec., Data Size = 35 GB
Need: 3.5 GB/sec (28 Gb/s) from disk to node.

* Reads are synchronized between nodes (every node works
in concert with the others on a given time step).

— Large waves of read requests from large numbers of nodes at
the same time.
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And it is SLOW!

Franklin JaguarPF

16,000 32,000 16,000 32,000
No. of cores No. of cores

Core-collapse supernova simulation from the CHIMERA code — @ 3.5 million cells
These results show that, although there is variation across the supercomputers, I/O is
the slowest phase by one to two orders of magnitude.

— Courtesy of Childs, et. al.: Extreme Scaling of Production Visualization Software on
Diverse Architectures

UNCLASSIFIED — LA-UR: 11-04588 “Los Alamos @1 UCF 9
ATIOwA soraTory =

sssssss



Improving Visualization Read Performance using Distributed File Systems

Solution: VislO
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VislO: Premise

* Not enough bandwidth to Parallel File Systems
via Networks.

— Need latencies in seconds NOT minutes.

— We have already established that:
* Data sets are getting larger AND

 Visualization reads in large slabs of variables per time
step.

e What if we could cut the network out of the
picture?
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VislO: Idea...

 What if we collocated compute resources
powerful enough to run visualization algorithms
with storage?

— Distributed File Systems!

* Setup a visualization cluster with integrated
storage on each node.

— Data Intensive Supercomputing (DISC)!

* Now we can have each process independently
load a portion of the data set for the given time
step from the local storage bus (SAS, SATA, etc).

— No sharing with other nodes or other clusters!
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VislO: How?

* Use ParaView & Hadoop Distributed File
System as Proof of Concept.

— Rewrite the reader subsystem in ParaView to use
libHDFS commands (need C++ compatibility here).

— Translate libHDFS calls to/from C++ istreams to
use existing parser code.

 But how do we know we will only need the
data that is local?
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VislO: Scheduling

 ParaView’s native file format is a binary file with an
XML header that specifies the whole and sub extents
of the data.

* Query NameNode for location of each piece file.

e Use Stable Marriage Algorithm to greedily produce a
schedule across the nodes in the cluster.
— Schedule scarcest file first.

 When ParaView asks for a subextent — make sure that
node who is scheduled for that file takes the task.

— No internode data transfers if an ideal schedule is
produced! €< We have cut the network out of the picture!
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VislO: Prove It!

e Tested with two real datasets
— VPIC
— Ocean Salinity (from POP)

* ParaView 3.8.0 & Hadoop 0.20.2

*  TACC Longhorn Visualization Cluster

— 256 Total Nodes
e Dell PowerEdge R610 (240 nodes)
¢ Dell PowerEdge R710 (16 nodes)

— 2 Intel Nehalem Quad Core Processors @ 2.53
GHz.

— 48 GB RAM (R610) / 144 GB RAM (R710)
— 73 GB 15K RPM SAS Hard Drive (1 per node)
— 4x QDR Mellanox InfiniBand Fabric
— 2 NVidia Quadro FX 5800 GPUs
— Lustre Parallel File System (210 TB)
— Cent0S54
* TeraGrid Allocation: TG-ASC100033
— 150,000 SU (2010-2011)
— Renewal In Review for 2011-2012
— Co-PIs: Mitchell, Ahrens, Geveci

UNCLASSIFIED — LA-UR: 11-04588 /-ﬁ;Alamos

NATIONAL LABORATORY
5T.194.

S uUcE

15



VislO: Results

I/O Performance Benchmark on Longhorn @ TACC -
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VislO: Results

ParaView Time Series Test - VPIC Dataset - Average Performance
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64.38% Improvement at 128 nodes when using HDFS with Locality Scheduling.
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VislO: Results

Comparison of Data Sets Visualized at 128 Nodes
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VPIC Ocean Salinity
Dataset

51.43% Improvement at 128 nodes when using HDFS with Locality Scheduling for
Ocean Salinity Data
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VislO: Results

VPIC - Read Time Per 1/0 Operation - Stock Reader, Lustre Notice the decrease

in standard
deviation around
the marked mean.

- Improved
consistency in read
performance.

- Spikes in read
time == remote
reads.

Read Time (seconds)

1/0 Operation Sequence Number

VPIC - Read Time Per 1/O Operation - VislO, With Locality

Read Time (seconds)
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VislO: Conclusions

* Thisis a real implementation of Data Intensive
Supercomputing concepts.

* |tis possible to interface visualization
applications with Distributed File Systems.

* The removal of the network from the data path
has yielded impressive speedups in read time.

* Scheduling processes to co-locate with stored
data is key to maximum performance.

e A scaled approach with this method can yield
interactive visualization of Petascale and future
Exascale datasets.
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Rethinking I/O access patterns for Visualization

SOLUTION: CLIMATE VISUALIZATION
WITH THE PARALLEL OCEAN PROJECT
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/0O for POP: Work Flow

* N to 1 write for each timestep
— 1 file/timestep
e 1 file to N nodes when reading for analysis

* Circle of Influence allows us to change how we
read the data not how we write the data.

* There is a disconnect in the workflow between
what the simulation does and what the
analysis tool is optimized for.

///
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1/0O for POP: Observations

* Entire data set must be read into memory

* Visualization community has done a lot of work
on parallel algorithms — for idealized distribution
of data in memory.

* Typically use a data parallel processing method.

— Works well for the visualization and analysis
algorithms themselves.

— Simulation output is not always alignhed to this
pattern.

* We can read the data faster if we access itin a
way that complements the analysis algorithms.
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/0O for POP: A Data Set of Interest

* 3600 x 2400 x 42 spatial resolution
* 365 time steps

* 1 floating point scalar field

* 1.4 GB per time step

* single file per time step

* 529 GB for entire data set
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/O for POP: Traditional Processing

* The big 3 parallel visualization front ends

— For each time step

* Each of n processors read 1/n of time step

— produce geometry
— Render

* Composite image

* Processes 1 time step at a time

e Effectively uses parallel rendering and
compositing
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UVCDAT: Use Case 1

High spatial resolution, time and space parallel, image sequence production

e e G

Compute

Product

11T
N1 T

Let p be the number of processors available, s the total number of time steps, m and
n be factors of p such that n*m =p, n is the number of processor groups and m is the
size of each group.
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UVCDAT: Use Case 2

High spatial resolution, time and space parallel, time average

Time Steps

Compute

Reduction Operation

Product

Let p be the number of processors available. Let m and n be factors of p such that
n*m =p, nis the number of processor groups and m is the size of each
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/O for POP: New Processing

Divide parallel resources into time compartments

* Allows balancing of Amdahl’s law between reads
and the rest of the pipeline

o %% %% R %%

Compute

Product

Let p be the number of processors available, s the total number of time steps, m and
n be factors of p such that n*m =p, n is the number of processor groups and m is the
size of each group.
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1/0O for POP: Results

 We are seeing better than 10x increases in
total processing time for a canonical use of
the first use-case.

 We're investigating visualization and analysis
algorithms to process data distributions as
they stand after reading the data efficiently
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Questions?

Project Supported By:

U.S. DEPARTMENT OF

ENERGY
«»

XSEDE

Extreme Science and Engineering
Discovery Environment
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